Motion-based segmentation and classification of video objects

نویسنده

  • Gerald Kühne
چکیده

In this thesis novel algorithms for the segmentation and classification of video objects are developed. The segmentation procedure is based on motion and is able to extract moving objects acquired by either a static or a moving camera. The classification of those objects is performed by matching their outlines gathered from a number of consecutive frames of the video with preprocessed views of prototypical objects stored in a database. This thesis contributes to four areas of image processing and computer vision: motion analysis, implicit active contour models, motion-based segmentation, and object classification. In detail, in the field of motion analysis, the tensor-based motion estimation approach is extended by a non-maximum suppression scheme, which improves the identification of relevant image structures significantly. In order to analyze videos that contain large image displacements, a feature-based motion estimation method is developed. In addition, to include camera operations into the segmentation process, a robust camera motion estimator based on least trimmed squares regression is presented. In the area of implicit active contour models, a model that unifies geometric and geodesic active contours is developed. For this model an efficient numerical implementation based on a new narrow-band method and a semi-implicit discretization is provided. Compared to standard algorithms these optimizations reduce the computational complexity significantly. Integrating the results of the motion analysis into the fast active contour implementation, novel algorithms for motion-based segmentation are developed. Since both static and mobile cameras are taken into account, motion-based segmentation is possible even when camera motion is present. In the field of object classification, a shape-based classification approach is extended and adapted to image sequence processing. Finally, a system for video object classification is derived by combining the proposed motion-based segmentation algorithms with the shape-based classification approach. For each contribution experimental results are reported that demonstrate the effectiveness of the proposed algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified CLPSO-based fuzzy classification System: Color Image Segmentation

Fuzzy segmentation is an effective way of segmenting out objects in images containing both random noise and varying illumination. In this paper, a modified method based on the Comprehensive Learning Particle Swarm Optimization (CLPSO) is proposed for pixel classification in HSI color space by selecting a fuzzy classification system with minimum number of fuzzy rules and minimum number of incorr...

متن کامل

Multiresolution video object extraction fitted to scalable wavelet-based object coding

To enable content based functionalities in video processing algorithms, decomposition of scenes into semantic objects is necessary. A semi-automatic Markov random field based multiresolution algorithm is presented for video object extraction in a complex scene. In the first frame, spatial segmentation and user intervention determine objects of interest. The specified objects are subsequently tr...

متن کامل

Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images

As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...

متن کامل

Traffic Scene Analysis using Hierarchical Sparse Topical Coding

Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...

متن کامل

Kernel-based Multiple Cue Algorithm for Object Segmentation

This paper proposes a novel algorithm to solve the problem of segmenting foreground-moving objects from the background scene. The major cue used for object segmentation is the motion information, which is initially extracted from MPEG motion vectors. Since the MPEG motion vectors are generated for simple video compression without any consideration of visual objects, they may not correspond to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002